

纳米碳酸钙增强聚丙烯纤维的研究

北京服装学院 郑楠 高绪珊 童俨

聚丙烯(pp)纤维是一种综合性良好且应用广泛的纤维。对 PP 纤维进行改性,可以更加拓展其应用领域。纳米粒子具有体积效应、表面效应、量子尺寸效应等独特性质,已广泛应用于材料、电子、光学、生物、染料、医学和催化等高技术领域。纳米碳酸钙(CaCo₃)作为纳米粒子的一种,同其它类似功能型产品相比具有原料易得、价廉、白度高、着色力强、对生物体无害、表面处理剂选择范围广等特点。作者通过共混纺丝法将纳米碳酸钙表面处理后加入到 PP 纤维中,并对改性纤维的结构与性能进行了分析。

1 实验

1.1 原料

PP 切片:熔体流动指数(10min),35g,中国科学研究院产;纳米 CaCO₃:北京化工大学教育部超重力工程研究中心产;分散剂:自行配制;溶剂:无水乙醇 北京化工厂产。

1.2 仪器设备

模拟纺丝机:将 XRZ400 型熔体流动速率仪(吉林大学科学仪器厂)改装后自制的模拟纺丝机,用电动搅拌器自制的卷绕辊;拉伸仪器:将丝杠拉伸机放在电加热器中制得模拟拉伸机。

1.3 实验方法

1.3.1 纳米碳酸钙的表面处理

将分散剂放入无水乙醇中,加热搅拌,使分散剂完全溶解。再将纳米碳酸钙加入分散剂的乙醇溶液中,充分搅拌。将所得物烘干后放在研钵中研成细粉末,即得到处理好的纳米碳酸粉末。

1.3.2 螺杆挤出造粒

将 PP 切片和处理好的纳米碳酸钙粉末按照一定比例预先混合均匀, 然后通过单螺杆挤出

机熔融,挤成细条,剪成约2mm长的小粒子。

1.3.3 纺丝及后处理

使用全造粒纺丝法,将一定配比的分散剂、纳米 CaCO₃和 PP 切片通过单螺杆挤出机造粒后得到的混合粒子,再经模拟纺丝机进行纺丝。

纺丝温度为 210 ℃,拉伸温度为 70 ~75 ℃,拉伸倍数为 5.7 ~7.9,紧张热定型温度为 130 ℃,时间为 10s。

1.4 测试

纤维力学性能:在 YG7004N 型单纤维强力仪上进行测试,结果取 15 次数据的平均值。取向度:采用色那蒙补偿法,用 XPL-1 型偏光显微镜进行测定。

结晶度: 采用差热分析法,用 PCR-1 型差热分析仪进行测定。

纤维结构及纳米粒子分散性:利用 H-800 型透射电子显微镜观察纳米粒子的分散情况。

2 结果与讨论

2.1 分散剂

由表 1 可知,在纺丝条件相同的情况下,纺制的含纳米 CaCO₃的 PP 纤维的强度比 PP 纤维都有明显提高,而且经过表面处理的纳米 CaCO₃比未经表面处理的纳米 CaCO₃的增强幅度大。这说明用分散剂处理纳米 CaCO₃是非常必要的,使纳米 CaCO₃减少团聚,分散更加均匀,有利于 PP 纤维的增强。

表 1 改性 PP 纤维的力学性能

试样	断裂强度/ (cN. dtex ⁻¹)	断裂伸长,%
PP 纤维	4. 43	89. 65
改性 PP¹)	4.57	80. 85
改性 PP ²⁾	5. 70	90.74

Tab. 1 Mechanical properties of modified pp fiber

- 1) 含未表面处理的 1%纳米 CaCO₃。
- 2) 含表面处理的 1%纳米 CaCO₃。

2.2 分散剂与纳米 CaCO3 的配比

固定纤维中纳米 CaCO。的质量分数为 1%, 改变分散剂与纳米 CaCO。的比例, 由表 2 可见,

用分散剂处理纳米 CaCO₃,有利于纳米 CaCO₃ 在 PP 纤维中的分散和提高 PP 纤维的力学性能,但也不是分散剂越多越好。当分散剂与纳米 CaCO₃比例为 1:3 时,纤维断裂强度最大。

表 2 分散剂与 CaCO。配比对纤维力学性能的影响

Tab. 2 Effect of mass ratio of dispersant and nano-CaCO₃ on mechanical properties of the resulted fiber

	the resulted riber	
分散剂:纳米 CaCO。 (质量比)	断裂强度/ (cN. dtex⁻¹)	断裂伸长,%
1:1.0	4. 02	87. 31
1:1.5	4. 14	106.74
1:1.7	4. 42	100.89
1:2.0	5. 70	90.74
1:2.5	6. 18	85. 22
1:3.0	6. 44	96. 15
1:4.0	4. 25	69. 70

2.3 纳米 CaCO3 含量

从表 3 中看出,在分散剂与纳米 CaCO₃ 的质量比为 1: 3,改性 PP 纤维断裂强度都比 PP 纤维高,而当纳米 CaCO₃ 质量分数为 0.3%时,纤维的断裂强度是最大的,比 PP 纤维增强了 75.85%。初始模量的变化趋势与断裂强度变化趋势相同,纳米 CaCO₃ 质量分数为 0.3%的纤维 初始模量最高,比 PP 初始模量增加 75.05%。

在纺丝时发现,当纳米 CaCO₃ 质量分数为 2.0%, 3.0%, 5.0%时,会经常出现断丝现象,纺出的丝也不均匀;而等于或小于 1.0%时,纺丝情况较好。所以纤维中的纳米 CaCO₃ 质量分数以 0.3%为宜,不仅可纺性好,而且可以达到增强的目的。

表 3 不同纳米 CaCO。含量的 PP 纤维的力学性能

Tab. 3 Mechanical properties of pp fibers containing different amounts of nano- CaCO₃

PP 纤维中的 CaCO3	断裂强度/	初始模量/
质量分数,%	$(cN. dtex^{-1})$	(cN. dtex ⁻¹)
0	4. 43	51.62
0.3	7. 79	90. 36
0.5	5. 92	67. 37
0.8	6. 10	64. 63

1. 0	6. 44	74.81
2.0	5. 51	71. 54
3. 0	5. 46	68. 22
5. 0	5. 16	66. 10

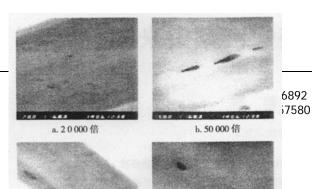
2.4 取向度和结晶度

由表 4 可知,加入纳米 CaCO₃后,改性 PP 纤维的取向度与 PP 纤维相比,变化不大甚至降低,这说明改性 PP 纤维力学性能的改善,不是由取向度的提高得到的。

表 4 PP 及改性 PP 纤维的取向度和结晶度

Tab. 4 Orientation degree and crystallinity of pp and modified pp fibers

PP 纤维的 CaCO ₃ 质量分数,%	双折射率×10³	结晶度,%
0	32. 75	50.00
0.3	30. 54	60. 43
1.0	30. 43	61.07
2. 0	31. 26	48. 18
3. 0	31.88	35. 03


注: 纤维中分散剂与纳米 CaCO₃的质量比为 1:3。

由表 4 还可以看出,纳米 CaCO₃质量分数小于等于 1.0%时,结晶度随纳米 CaCO₃含量的增加而增加,这是因为纳米 CaCO₃在 PP 结晶过程中,起到了明显的异相成核作用;当纳米 CaCO₃质量分数大于等于 2.0%时,其结晶度降低,这是纳米 CaCO₃含量过多会形成团聚粒子而扰乱了大分子规整排列结晶所致。

2.5 透射电子显微镜观察分散性

对分散剂: 纳米 CaCO₃(质量比)为 1: 3,纳米 CaCO₃质量分数为 0.3%的改性 PP 纤维用透射电子显微镜结果如图 2 所示。通过投射电子显微镜,可以观察到纳米 CaCO₃粒子在 PP 基质中分散比较均匀,没有出现大的团聚体,而且可以测算出分散于纤维中的纳米粒子的粒径在40~80nm。

通过电镜,还可以观察到纳米 CaCO。粒子一般都沿着纤维轴向方向分布,这是由于纺丝,拉伸过程中粒子受到了沿轴向方向的拉伸力,所以会产生沿轴向方向的排列。

中国丙纶网 常州网优信息技术有限公司

e-mail:service@fibreinfo.com http://www.fibreinfo.com http://www.canseo.cn

3 结论

a. 当分散剂与纳米 CaCO₃的质量比为 1: 3,加入纳米 CaCO₃改性的 PP 纤维断裂强度和初始模量均比 PP 纤维高,纳米 CaCO₃质量分数为 0.3%的改性 PP 纤维最大。

b. 与 PP 纤维相比,含纳米 CaCO₃PP 纤维的取向度变化不大; 当纳米 CaCO₃质量分数小于等于 1.0%时,结晶度有所提高; 而当纳米 CaCO₃质量分数大于等于 2.0%时,结晶度则下降。 因此 PP/纳米 CaCO₃纤维断裂强度、初始模量等的提高并不取决于取向度和结晶度,而与其新形成的结构有关。

Tel:(86-519)85126892

Fax: (86-519) 85157580

C. 纳米 CaCO₃粒子在纤维基质中分散比较均匀,纳米粒子径为 40~80nm。

原载:《合成纤维工业》2007年第2期