

CaCO₃/聚丙烯共混制备多孔聚丙烯纤维的研究

大连轻工业学院材料科学与工程系 杨恩宁 郭静

前言

聚丙烯纤维的特殊性能使它在最近的几十年中有了飞速的发展,不过其吸湿性差、蜡感强等缺点也限制了它更广泛的应用。人们在注意到这种情况以后也用了很多改性方法。考虑到经济、环保等客观因素,本文采用 CaCO₃ 作为成孔剂制备多孔聚丙烯纤维。主要是通过 CaCO₃ 均匀混在熔融的聚丙烯中,拉伸成中空纤维,用盐酸进行后处理,混在中空纤维中的 CaCO₃ 溶出后就形成多孔。这种方法简单易行,不会对环境造成污染,而且原料低廉易得。改性后的聚丙烯纤维有着更加优异的吸湿性和柔和的光泽。

1 实验

1.1 实验原料

聚丙烯切片: 70218, 熔融指数 18.7g/10min, T_m=167℃, 辽化产;

 $CaCO_3$: 粒径 $<1 \mu m$,密度 2.71 g/cm³,吉林新博化学工业有限公司;

盐酸:公主岭市化学试剂厂。

1.2 试样的制备

将聚丙烯切片与 CaCO₃粉末相混合,在螺杆挤压机中挤出,形成共混物。

1.3 共混物的性能测试

1.3.1 共混物的流动性

利用日本岛津 CFT-500 型毛细管流变仪测定共混物的表观黏度。

测试温度: $230\pm0.2^{\circ}$, $270\pm0.2^{\circ}$

测试压力: 1.96×10^{5~}1.18×10⁶Pa:

毛细管规格: 长径比 L/D=10/0.5。

1.3.2 共混物的密度的测试

利用韦氏天平测定。

重液:水;轻液:乙醇。

共混物的理论密度计算公式:

 $1/\rho = (w_1/\rho_1) + (w_2/\rho_2)$

式中: ρ ——共混物的密度;

ρ.——聚丙烯的密度;

ρ₂——CaCO₃的密度;

w₁——聚丙烯的质量分数;

 w_2 ——CaCO₃的质量分数。

1.3.3 力学性能的测试

在测定速度为 500mm/min, 定长为 100 mm 的条件下, 在 YG024 型电子单纱强力机上测试纤维的力学性能。

1.3.4 回潮率测试

将用 6%的盐酸处理过的共混纤维在标准温湿度下平衡 72h, 按下式计算回潮率:

回潮率= (w₁-w₀) / w₀×100%

式中: w₁——吸湿平衡时纤维的质量, g;

w₀——为干燥后纤维的质量, g。

1.3.5 共混纤维表面形态的观察

在电子显微镜下观察盐酸处理后的纤维的表面形态。

2 结果与讨论

2.1 共混物的流动曲线

分别于 230℃和 270℃下测定含 CaCO₃ 1%、3%和 5%的共混物的流动曲线如图 1 和图 2。由图 1 和图 2 可见:共混物的流动性质与聚丙烯类似,也是切力变稀流体。相同温度和剪切应力条件下,CaCO₃含量增加共混物流体的表观黏度下降。这是因为 CaCO₃的存在增大了聚丙烯的大分子链之间距离,使大分子链之间缠结几率下降,黏度降低。

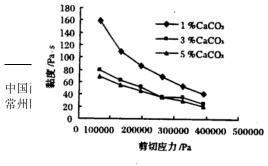


图 1 230 ℃共混物的流动曲线

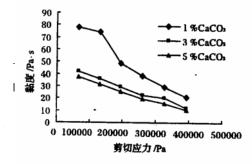


图 2 270 ℃共混物的流动曲线

oreinfo.com nfo.com o.cn

	样品	线密度	实测密度	理论密度	理论与实际
_		/dtex	/g • cm ⁻³	/g • cm ⁻³	偏差率/%
	聚丙烯	_	0.910	_	_
	含 1% CaCO ₃ 聚丙烯	20.08	0.909	0.916	0.77
	含 3% CaCO ₃ 聚丙烯	22.83	0.914	0.929	1.60
_	含 5% CaCO ₃ 聚丙烯	22.67	0.919	0.941	2. 39

观察图 1 和图 2 可见: $CaCO_3$ 含量不同,对表观黏度的影响结果也不同。 $CaCO_3$ 含量由 1%增加到 3%,表观黏度变化较大;而 $CaCO_3$ 含量由 3%增加到 5%,表观黏度的变化相对减小。这主要是由于 $CaCO_3$ 表面能的存在,使 $CaCO_3$ 含量增加到一定程度以后,发生团聚,对表观黏度的影响程度变小。

对比图 1 和图 2 可见:温度提高,共混物的表观黏度减小,这与一般聚合物的流动性规律一致。

2.2 共混物的密度

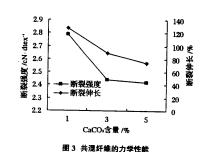
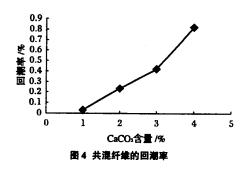

聚丙烯、CaCO。及其共混物的实测密度与理论密度如表 1。

表 1 共混物的密度

由表 1 可见: 共混物的密度随 $CaCO_3$ 含量增加而增大,实测密度小于理论密度。导致这种现象的原因一方面是由于 $CaCO_3$ 在聚丙烯中起到成核剂的作用,其存在导致结晶更加完善,密度升高;另一方面的原因是 $CaCO_3$ 本身的密度较高。实测密度小于理论密度的事实说明 $CaCO_3$ 与聚丙烯间还存在相隙,理论与实际偏差率随 $CaCO_3$ 含量增大而增大说明 $CaCO_3$ 含量增加会增加相隙产生的几率。

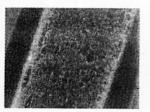
2.3 共混纤维的力学性能

将 CaCO₃与聚丙烯共混纺丝,所得到的纤维力学性能如图 3。


中国丙纶网 常 常州网优信息技术有限公司 22 5126892 e-mail:service@fibreinfo.com 5157580 http://www.fibreinfo.com http://www.canseo.cn

随着 CaCO₃ 的增加,纤维的断裂强度、断裂伸长率相应下降。这是由于不相容的 CaCO₃ 的 加入增加了纤维的相隙,这些相隙容易造成应力集中,致使纤维断裂强度和断裂伸长下降。

2.4 共混纤维的回潮率


用 6%的盐酸处理 CaCO₃与聚丙烯共混纤维,所得共混纤维的回潮率如图 4。由图 4 可见: 随着 CaCO。含量的增加,共混纤维的回潮率增大。这主要是由于 CaCO。含量增加,经过酸处理 后的纤维孔越多, 比表面越大, 吸湿性越好。

2.5 共混纤维的表面形态

经盐酸处理后的聚丙烯和 CaCO₃/聚丙烯共混纤维的表面形态如图 5。由图 5 可见: 经盐 酸处理后聚丙烯表面无明显变化,纤维表面光滑;而 CaCO₃/聚丙烯共混纤维的表面有明显的 微孔存在。这是由于存在于共混纤维中的 CaCO₃ 与盐酸产生了如下化学反应: CaCO₃+2HC1→ CaCl₂+CO₂↑+H₂O,反应产生的 CaCl₂为水溶盐,CO₂为气体,这两种产物伴随反应过程的进行 脱离纤维表面并在纤维表面留下微孔。

聚丙烯纤维

CaCO/聚丙烯共混纤维

图 5 酸处理后聚丙烯纤维与 CaCO /聚丙烯共混纤维的表面形态

(放大 1000 倍)

Fax: (86-519) 85157580

e-mail:service@fibreinfo.com http://www.fibreinfo.com http://www.canseo.cn

3 结论

- 1. CaCO₃/聚丙烯共混物为切力变稀流体,表观黏度随着 CaCO₃ 的增加而下降。
- 2. CaCO₃/聚丙烯共混物的密度随着 CaCO₃含量的增加而增大。
- 3. CaCO₃/聚丙烯共混物的断裂强度、断裂伸长率随着 CaCO₃含量的增加而减小。
- 4. CaCO₃/聚丙烯共混纤维的回潮率随着 CaCO₃含量的增加而增大。

Tel:(86-519)85126892

Fax: (86-519) 85157580