Vol. 27 No. 1

丙纶 BCF 工艺控制对产品质量的影响

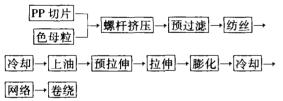
辛长征 杨秀琴 张 颖2

(1. 河南纺织高等专科学校,河南 郑州 450007; 2. 河南中州凯辉化纤股份有限公司,河南 郑州 451252)

摘 要:介绍了丙纶 BCF 膨化装置的特点,探讨主要工艺参数对丙纶 BCF 的膨化度等质量的影响。生产 2 650 dtex/150 f 丙纶 BCF 时,控制膨化温度 145 °C,膨化压力 0.5 MPa,喂丝速度 1 400 m/min,单丝线密度 $16 \sim 18$ dtex,含油率 1 % 左右,产品质量优良。

关键词:聚丙烯纤维 膨化长丝 变形丝 膨化度 膨化温度 膨化压力

中图分类号: TQ342.62 文献识别码: B 文章编号: 1001-0041(2004)01-0038-02


1 生产过程

1.1 原料

聚丙烯(PP):洛阳 S800,洛阳石化总厂生产, MI 16.8 g/10 min,灰分 0.01%,等规度大于或等于 98%。色母粒:广东新会彩艳纤维母粒股份有限公司生产;油剂:大连理工大学生产,牌号 DG-202。

1.2 设备及工艺流程

意大利 Plantex 公司三色拉伸变形丙纶 BCF 一步法生产设备,3 位 12 头。工艺流程如下:

2 结果与讨论

2.1 膨化设备的特点及其对生产的影响

膨化装置为闭式结构,其组成主要为导丝管,填塞管。导丝管内部是长圆柱孔,上部有一螺旋斜齿槽。螺旋斜齿槽上端是一喇叭口,喇叭口上端放置可调节螺丝。螺旋斜齿槽的作用是使气流产生紊乱,调节螺丝的作用是调节进气量的大小。填塞管的结构较为简单:在一根长圆柱上开狭长排气槽,丝束在圆柱孔内堆积、填塞而产生三维卷曲^[1-3]。膨化装置结构^[4]如图 1。

膨化原理:丝束在高温高压气流的带动下,进 入导丝管中,经过预热,大分子链具有一定的活动 能力,进入膨化管后,在膨化管栅栏处存在着较大 的速度梯度。在栅栏开口处由于压力的突然下降,丝的行进速度也陡然降低,丝束猛烈撞击周围的栅栏,由于喷射气流造成紊流、漩转流等产生的综合作用而使丝束发生立体三维变形。在膨化管栅栏后部,丝束速度较低,丝在此形成阻塞区,因为前端丝的压力较高而将阻塞区的丝推出膨化管。

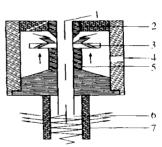


图 1 膨化装置示意图

Fig. 1 Sketch map of texturizer

1. 喂人丝条; 2. 调节螺丝; 3. 螺旋斜齿槽; 4. 热气流入口; 5 导丝管; 6. 填塞管; 7. 栅栏区

根据膨化设备的特点和膨化原理,在实际生产操作中,丝条进口处的可调节螺丝和导丝管顶部的喇叭口必须对照一致,且进气量要调节合适,否则丝条不能顺畅地进入导丝管,而容易缠辊、乱车。

调节螺丝、导丝管、填塞管必须定期清理。这 些部件的内部极易积结油污垢,油污垢易把丝条 磨毛,造成毛丝,而且丝在内部挤出不顺畅,极易

收稿日期: 2003-08-21; 修改稿收到日期: 2003-12-09。 作者简介: 辛长征(1969-),男,河南博爱人,硕士生。主要从事化学纤维、非织造布的教学和科研。 乱车。在生产不稳定时,还应检查该部分是否有磨损的地方,若有磨损及时更换。

2.2 工艺控制

丝束膨化变形效果主要反映在膨化度、收缩率上。它们是衡量 BCF 质量的重要指标。当加工两纶 BCF 的膨化设备固定时,丝束变形效果与膨化温度、膨化压力、丝束的喂入速度及丝束自身特性等有关^[5.6]。

2.2.1 膨化温度

膨化温度是影响膨化变形效果的主要因素之一。温度控制不当,会直接影响到丝束的质量。温度过低,膨化效果不好;温度太高,丝束的色泽发生变化,手感变硬。在实际生产中,应结合膨化压力和膨化设备自身特征等来设定温度,应尽量取下限值,以保证丝束柔软丰满。

2.2.2 膨化压力

膨化压力决定气流喷射作用的强弱。压力越高,丝束受到的弯曲作用就越大,膨化变形效果也就越好。但若压力过大,则会影响到丝束的冷却效果,使得卷曲收缩不匀率提高,而且还会使卷曲张力过大,造成卷装成形差。在实际生产中,膨化温度和膨化压力要综合考虑,它们对膨化效果及生产稳定性的影响主要有:

- a. 当膨化温度和膨化压力较高时,丝条出膨化管后,在冷却鼓上膨化面积小,得不到充分的冷却和松弛,三维变形后的定型效果差,同时丝条的收缩不匀率会提高,而且卷绕张力过大,造成卷装成形差。
- b. 当膨化温度较高时,膨化压力较低时,丝条 在进入膨化装置时比较困难,同时在填塞管内堆 积不匀,易缠辊,造成乱车,且丝条三维变形效果 差。
- c. 当膨化温度较低,膨化压力较高时,丝条在导丝管内得不到充分的预热,在填塞管内容易积结成球,且耗气量大,实际生产中表现在退绕时易产生断头。
- d. 当膨化温度和膨化压力较低时,丝条在导 丝管内得不到充分预热且在填塞管中排气过程减 慢,三维卷曲效果较差,导致膨化度降低。

膨化工艺对 2 650 dtex/150 f 丙纶 BCF 性能的影响见表 1。

从表 1 可以看出,膨化温度控制在 145℃,膨化压力控制在 0.5 MPa 时,所得 BCF 变形丝的质量较好。

表 1 膨化工艺对 BCF 性能的影响

Tab. 1 Effect of bulking process on BCF characteristics

———— 膨化温度/ ℃	膨化压力/ MPa	膨化度, %	收缩率, %	收缩率变 异系数,%
155	0.65	19.0	6.0	18.0
155	0.50	18.0	5.8	16.0
155	0.40	15.5	6.5	14.0
145	0.65	18.5	5.7	18.5
145	0.50	18.8	3.8	11.5
145	0.40	16.8	4.5	14.0
135	0.65	16.6	4.6	15.0
135	0.50	16. 2	4.5	14.0
135	0.45	15.8	3.9	13.0
135	0.40	12.5	4.3	12.8
130	0.40	11.0	4.0	13.6

注: 膨化度、收缩率按 FZ/T54001-91 测试。

2.2.3 丝束喂入速度

进入膨化器的丝速应控制好。若丝速太低, 丝束和气流间的相对速度范围增大,丝束表面形成一气流层,丝速越低,该气流层与丝束贴得越紧,使得丝束不易开松而直接影响变形。若丝速太高,则丝束在膨化器中停留时间不足,而直接影响到变形效果。生产 2 650 dtex/150 f 丝束喂入速度控制在 1 400 m/min 左右。

2.2.4 丝束自身特性

丝束自身特性包括单丝的截面形状、单丝线密度、含油率及 PP 切片与色母粒的配伍性等。当丝的截面为非圆形时,则各单丝间的附着力小,易开松、分离和卷曲变形。单丝线密度较小时,弯曲变形较容易,蓬松性较好。含油率过大不易于开松,且在膨化管内的受热效果差;过小则又影响了丝束的抱合性、手感,达不到消除静电的效果,且在膨化过程中易产生毛丝。色母粒的特性对有色丙纶 BCF 纱质量也有相当大的影响,一般深色的 BCF 膨化度较高,浅色的膨化度较低。

2 650 dtex/150 f BCF 生产中,采用异型喷丝 孔生产的纤维截面形状为三叶形,单丝线密度控制在 16~18 dtex,含油率控制在 1% 左右。

3 结语

膨化温度、膨化压力直接影响丙纶 BCF 的膨化度和产品质量。在实际生产中,对膨化温度、膨化压力应协调控制,同时还要控制好喂丝速度和喂丝质量。在生产过程中,对膨化装置应正确操作,定期清理维护膨化装置的各个部件,以使生产连续稳定。

(下转第43页)

43

件下,应适当的降低聚合、萃取、干燥过程中的温 度及时间。回收系统要控制较低的罐存,蒸发及 蒸馏系统要力求在较短的时间内完成生产的要 求。

2.2 优选设备材质

生产过程所需的设备、管线、阀门、容器等原 则上采用 OCr18Ni9Ti 或较之性能更优的不锈钢 材料制造。同时在整个生产过程中要配备必要的 氮封设施,防止物料与空气接触被氧化。对于与 物料接触的负压操作的设备,要求进行严格的气 密泄漏性实验,防止生产过程中空气进入系统,造 成物料的氧化。

2.3 原料及公用工程介质

为防止聚己内酰胺的氧化,单体己内酰胺要 求采用优级品,一般要求不含杂质,重金属离子含 量不超过0.5 μg/g。对于公用工程介质,一般要 求氮气中氧含量不超过 10 μg/g, 二级初盐水铁 含量及铜含量均要求小于0.1 mg/L。

2.4 其它

在回收己内酰胺过程中,在蒸馏釜中加入适 量的氢氧化钠对防止聚己内酰胺的氧化很有必 要;同时控制聚己内酰胺合理的端胺基含量,聚己 内酰胺密闭防潮避光保存都是防止其氧化变黄的 有力措施。

Reasons and prevention of polycaprolactam oxidation during its production

Yu Jianzhong

(Shijiazhuang Chemical Fiber Co., Ltd., Shijiazhuang 050032)

Abstract: The primary factors affecting polycaprolactam oxidation included oxygen content, reaction temperature and time, heavy-metal salt and amino end group. The polycaprolactam oxidation can be avoided during its production by optimizing process parameters, equipment material and raw materials.

Key words: polycaprolactam; oxidation; influential factor; measure

(上接第39页)

斌 文

- 1 丁奎武,徐小欣. 丙纶 BCF 纺丝装置技术改造初探[J]. 合成 纤维工业,1992,15(4):55~58
- 蔡致中. BCF 变形器的设计要求[J]. 合成纤维工业,2001,24 $(4).67 \sim 68$
- 3 崔启亮,王悌义. BCF 变形装置结构与性能分析[J]. 合成纤维

工业,1996,19(6):28~33

- 4 张瑞志,徐德增等. 高分子材料生产加工设备[M]. 北京:中国 纺织出版社,1999.139~149
- 5 邬国铭,李光. 高分子材料加工工艺学[M]. 北京:中国纺织出 版社,2000.109~111
- 6 付强,张毅学. 浅析生产消光丙纶 BCF 丝的工艺控制[J]. 河 南纺织高等专科学校学报,2002,(2):43~44

Effect of process control on quality of PP BCF

Xin Changzheng¹, Yang Xiuqin¹, Zhang Ying²

(1. Henan Textile College, Zhengzhou 450007; 2. Henan Zhongzhou Kaihui Chemical Fiber Co., Ltd., Zhengzhou 451252)

Abstract: The characteristics of PP BCF texturizer were introduced. The effect of process parameters on the quality of PP BCF, especially degree of bulking, was discussed. The PP BCF of 2 650 dtex/150 f can be produced with extraordinary quality under the conditions of bulking temperature 145°C, bulking pressure of 0.5 MPa, feeding rate 1 400 m/min, denier per filament of 16 - 18 dtex, finish oil content about 1%.

Key words: polypropylene fiber; bulked continuous filament yarn; textured yarn; degree of bulking; bulking temperature; bulking pressure